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Abstract: In this paper an approach for modeling landing gear systems is presented. Specifically, a
nonlinear model of an main landing gear is developed. This model includes nonlinear effects such as a
polytropic gas law, velocity squared damping, a geometry governed model for the discharge coefficients,
stick-slip friction effects and a nonlinear tire spring and damping model. An initial model was developed that
only included the air-spring above the fluid, fluid dynamics through a fixed orifice, and a linear tire spring
term.
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1. Initial landing gear investigation

This chapter is intended to familiarize the reader
with landing gear terminology and to demonstrate
a mathematical development of the equations of
motion for a telescoping landing gear. Figure 2-1 is
intended to acquaint the reader with basic landing
gear components. It shows the simplified
components of a telescoping, main landing gear
(as opposed to a nose gear).

Point 1 on the figure is a rigid body
representation of the aircraft fuselage. Point 2 is a
chamber containing compressed nitrogen which
serves as a spring that carries the weight of the
plane in ground operations. Point 3 refers to the
main, upper cylinder which houses the
compressed gas, hydraulic fluid, and within which
the piston slides.  Point  5  is  the orifice plate.  It  is
essentially a circular plate with a hole in the center
through which the hydraulic fluid flows when the
strut is stroking. It, along with the metering pin,
point 6, controls the damping characteristics of
the gear. Point 7 locates one of many rebound or
snubber  orifices.  These  holes  lead  into  a  small
volume on the backside of the piston head (point
8) called the rebound or snubber chamber. The
purpose of the snubber is to provide damping
when the strut extends. The Point 9 is the piston.

Figure 1. Schematic of typical telescoping main
landing gear studied

It houses the metering pin and is also the rigid
connection of the wheel axle. Finally, point 10 is
the tire. This element of the gear adds both spring
and damping characteristics to the overall
performance of the gear, and is selected carefully
for various applications.

mailto:bosniceanud:@yahoo.com


TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies

174

2. Nonlinear model development

This research discusses an independent
development of a mathematical model of a main
landing gear with all the relevant physical
parameters included. The nonlinear equations of
motion are developed for a telescoping main gear.

An initial model was developed that only
included the air-spring above the fluid, fluid
dynamics through a fixed orifice, and a linear tire
spring term. This simple model allowed some
trend comparison between the results of this model
and the early results of the linearized gear. A
metering pin was then added to change the main
orifice effective diameter as a function of stroke.
Another variation was the addition of a snubber,
or rebound chamber. This feature provides
damping while the gear is extending. The model
includes constant seal friction as well as a variable
friction that is a function of stroke. In a further
effort to be realistic, a nonlinear tire model was
added.  This  tire  model  has  a  spring  rate  that  is  a
function of tire deflection and damping
proportional to compression rate. In the equations
developed below, the spring and damping
coefficient are used as if they were constant. The
nonlinear  characteristics  of  each  of  these  terms  is
included in the equations of motion that are
actually integrated.

Figure 2 is a schematic of the gear used in the
development of the equations of motion. This
schematic is representative of a general
telescoping-type main landing gear. It includes the
aerodynamic lift on the plane, Lift, the upper mass
(of the plane's fuselage) and the mass of the main
cylinder lumped together as a rigid mass, M,, and
the mass of the piston and the mass of the tire, also
lumped together as ML. The inertial coordinate of
the upper mass is Xwg. The zero value for Xwg is when the
gear is fully extended with the tire just touching the
ground. From this same gear configuration, Xa, the
coordinate of the lower mass, is taken as zero at the
axle of the tire. Therefore, when the gear is in some
compressed state, Xa measures the deflection of the tire
when the ground input, U(t), is zero.

In the compressed nitrogen chamber (upper
cylinder) with cross sectional area of A u  the pressure is
Pu. Likewise, in the lower chamber with cross sectional
area of AL,  there  is  a  pressure  of  PL. In the snubber
chamber, with annulus area of AR, the pressure is
defined  to  be  Ps. The orifice plate has a hole of

diameter  D op  through which the metering pin, with
variable diameter Dpin moves. Fluid reaches the snubber
chamber through the orifices ds

c and  ds
E, where the

superscripts represent either the compression mode or
extension mode respectively. The diameter of the piston,
Dpi, is used to calculate AR. Simply subtract the area of
the piston shaft from that of the lower cylinder to get
AR. The tire is also shown in Figure 2 with a distinction
of pointing out that the tire spring and damping
coefficients, K t  and C t  are nonlinear and contribute to
the calculation of the tire force Ft.

Figure 3 shows the forces acting on the upper
mass. Balancing the forces on the upper mass
gives the following equation:

fAPAAPAPLgMXM RSOLLUUUwgU )(
..

  (01)

The term on the left hand side of Eq. (01) is the
inertial motion term, g is the gravitational
acceleration,  f  is  the  friction  present  in  the  gear,
and all other terms are as described previously.
This equation assumes that the fluid pressure in the
upper cylinder is identical to the pneumatic
pressure.

Figure 2 - Schematic of telescopinc landing gear
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Figure 3 - Schematic of upper mass and main cylinder

In this area, reflects the fact that the metering
pin is included, i.e. it is a variable cross-sectional

area depending on stroke.

Figure 4 - Schematic of lower mass

Figure 4 shows the forces acting on the piston.
Summing the forces on the lower mass (piston)
the force balance equation is:

fFAAPAAPgMXM tSRSSLLLaL )()(
..

 (02)

Where the left hand side of Eq. (02) is the
inertial motion of the lower mass and As is the area
of  the  snubber  orifice.  Ft is  the  force  that  is
transmitted through the tire from the ground and

has the form:

)()(
..

UXCUXKF Utatt          (03)

where the tire force is a function of a nonlinear tire
stiffness and a damping force that is composed of a
damping coefficient that is proportional to the tire
stiffness  and  the  time  rate  of  change  of  the  tire
deflection.

3. Relation of pressures to stroke    position and
stroke rate

The pressure terms in Eqs. (01) and (02)
are as yet unknown and need to be related to the
positional variables Xwg and Xa or their derivatives.
The pressure of the compressed nitrogen in the
upper cylinder can be described by the polytropic
gas law for a closed system  as:

(04)

where Xs is the stroke available, given by:

aWgS XXX                        (05)

with  X SI  as some initial length, P SI , the
charge  pressure  at  X maxS , and , the polytropic
gas constant. X S max is the maximum value to
which the gear can be extended. This form of
representation of the pressure change is assumed
to happen as a quasi-equilibrium process. The
significance of the polytropic gas constant is that it
describes  the  type  of  process  that  occurs.  An
average value is usually sufficient in application

Equation (04) was defined in such a manner
that Pu will  become  very  large  when  Xs is near
X S max, i.e. the gear is nearly completely
collapsed. This is a suitable representation of the
process, with only the polytropic gas constant y
as an unknown.

The pressures (PL and  Ps) of the fluid in the
lower cylinder and in the snubber are related to the
flow rates of the fluid into and out of those
regions. The volumetric flow rates through the
orifice plate hole, Qc, and the snubber orifices, Qs,
can be determined by combining the continuity

)(
max SS

SI
SIU XX

XPP
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equation and Bernoulli's equation for fluids. Flow
is  always  from  the  higher  pressure  to  the  lower
pressure. Bernoulli's equation for an
incompressible fluid states that along a
streamline,

(06)

where P is  the pressure at  some point,  g  is  the
gravitational acceleration, V is the velocity of the
flow, v is the specific weight of the fluid which is
equal to the fluid density (p) multiplied by the
gravitational acceleration (g), and Z is the height
difference from some zero reference. This
equation assumes that the viscous effects within
the fluid are negligible, the flow to be steady and
incompressible, and that the equation is applicable
along a streamline.Equating Bernoulli's equation
(Eq. (06)) at two points in the flow along the same
streamline yields:

 (07)

In the case of a landing gear, the potential
distance between Z 1  and Z 2 can be neglected as
the distances involved are very small compared to
the other terms. Equation (07) with the continuity
equation for incompressible fluids which states Q =
A 1 V1  =  A2V2 allows for the solution of this
equation in terms of one of the velocities.
Assuming that P 1  > P2, i.e. the flow is from P 1  to
P2, then solve for V 1  from the continuity equation
as:

       (08)

When the flow reverses, i.e. P 1  <  P2, then the
velocity at point 2 is described by the above
equation with the pressure terms switched and a
negative sign on the square root. The ideal
volumetric flowrate (Qideal) for an incompressible
fluid can be expressed as  Qideal = A*V.
Now we have:

VACCdQQ didealreal                       (09)

Substituting Eq. (08) into Eq. (09) for velocity:

2121
4

2

1 ))(1(

2 PPPP

D
D

ACQ dreal
 (10)

For our landing gear, there are two flows that
are of concern, the flow through the orifice plate
and the flow into and out of the snubber chamber.
Define QsC as  the  flow  rate  into  the  snubber
chamber in the compression mode, where the
snubber orifice area (As)  becomes  As

c, which
allows  larger  flow.  The  flow  rate  through  the
snubber orifice during the extension mode is
defined as QS

E, and the area As becomes AS
E, which

only  allows  small,  restricted  flow.  In  both  cases,
the flow through the main orifice plate is Q O .

Figure 5 - Control volume between piston and orifice

plate

Figure 5 shows the direction of fluid flow into and
out of a control volume in the lower chamber as a
function of stroke mode (extension or
compression). In relating the flow rates to the
pressures, defining a control volume as shown by
the dashed line in Figure 5 is necessary. The
stroke rate is defined as

aWgS XXX
...

                         (11)
where the compression mode is given by Xs >

0.0, and the extension mode by Xs < 0.0. The flow
is assumed to be negative leaving the control
volume, and is positive entering it. For an
incompressible fluid, the volumetric flow rates for
compression and extension can be written as:
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0.0
.

SL
C
Sa XAQQ (12)

during the compression mode and

0.0
.

SL
E
Sa XAQQ (13)

during the extension mode. Equation (10) defined
the general form of the equation for a flow rateand
can be written as:

ULUL

L

o
doo PPPP

D
d

CAQ
))(1(

2
4

(14)

where d0 is the effective diameter of the main
orifice, DL is the diameter of the lower chamber,
and Cd is the discharge coefficient of the main
orifice. The flow through the snubber orifices
during this mode is described by:

with ds
c as the diameter of a snubber orifice, DL as

described above, C dS
C  is the discharge coefficient

of the snubber orifice and As
c is the effective area

of the snubber orifice. Similarly,
for  the  extension  mode  ,  where  flow  is  into  the

control  volume (P L PU  and P S ) .

LULU

L

o
doo PPPP

D
d

CAQ
))(1(

2
4

 (16)

where the difference between this equation and Eq.

(14) is that the pressure terms have exchanged
positions and the whole term is now positive. The
flow rate through the snubber orifices during the
extension mode is given by

where DR is the effective diameter of the annulus
snubber chamber, ds

E is the diameter of a snubber
orifice, AS

E is the effective area of the snubber
orifices and C dS

C   is the discharge coefficient of
the snubber orifices in the extension mode. To
simplify Eqs. (14), (15), (16), and (17), let the
non-pressure terms be redefined as:
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,   respectively.

Substituting Eqs. (14) and (15) into Eq. (12) and
Eqs. (14) and (15) into Eq. (13) using this new
notation, rewrite Eqs. (12) and (13) as

0.0
.

21 SLSLUL XAPPEPPE  for

SX
.

> 0                          (12.a)

0.0
.

43 SLLSLu XAPPEPPE  for

SX
.

< 0                          (13.a)

Figure 6 - Control volume for the snubber chamber
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Additional information about the flow rate-
pressure relationship can be gained by studying a
control volume in the snubber chamber as shown
by the dashed line in Fig.6 .

The  variables  AR and  DR in  Fig.6  are  the
rebound chamber annulus area and effective
diameter respectively. Ps is  the  pressure  in  the
rebound chamber and ds

c and ds
E are the diameters

of the snubber orifices in the compression mode
and extension mode respectively. In the case of
compression, where Xs > 0.0 and PL > Ps,

0.0
.

SR
C
S XAQ                (18)

Substituting the flow rate C
SQ  of Eq. (15) into Eq.

(18) yields: (19)
From previous notation of E i  this expression

becomes: 0.0
.

2 SRSL XAPPE       (20)
Rearrange Eq. (20) to get an expression for the
pressures in terms of the stroke rate as:

S
R

SL X
E
APP

.

2

                   (21)

2.
2

1

)( S
RL

UL X
E

AAPP                        (22)

where Pu is given in Eq. (04). Square both sides of
Eq. (21) and solve for Ps as:

                     P S = P L - (
2E

AR ) 2
2.

SX                 (23)

Similarly, for the extension case with Xs < 0.0:

2.
2

3

)( S
RL

UL X
E

AAPP            (24)

                     P S = P L - (
4E

AR ) 2
2.

SX            (25)

These known pressures [Eqs. (04), (22), (23),

(24), (25)] can now be substituted into Eqs. (23)

and (24). Algebraic simplification of these

equations leads to the compression and extension

cases in terms of readily measurable quantities

as:(01a)(02a)(01b)

(02b)

Introduce a new notation using subscripts to
simplify the above equations: "1" and "2" will be
associated with compression (equation set (a)),
and "3" and "4" with extension (set (b)). With this
change, the equations can be written
in the form:

(01c)
(02c)

where the coefficients of the stroke rate squared
term are assigned the C /

i s, and the coefficients of
the stroke position term are the K i 's.
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The only unknown term left in these equations
is friction. As mentioned previously, friction in
this gear comes mainly from two sources, friction
due to tightness of the seal and friction due to the
offset wheel (moment). The seal friction is
assumed to be a maximum value statically and
some function of velocity in the dynamic state.
The functional relationship between frictional force
level and velocity could be determined through
testing. The friction due to the offset wheel is the
result of the moment produced by the nonaxially
loaded piston within the cylinder.

It can be seen from Fig.7 that the force between
the piston head and the cylinder, N, is a result of
the tire force, Ft, applied at moment arm, ma, from
the centerline of the piston. The frictional force
due to the offset  wheel  (F ow  is  assumed to be of
the form (refer to Fig.7):

Figure 7 - Schematic of gear for friction model

development

NFOW                          (26)

Where  N  is  the  normal  force  of  the  cylinder
wall resisting the side of the piston head, and is
the coefficient of friction between the two parts.
To find the unknown force N, sum the moments
about point O to zero to get:

0)(:0 stpXNmaFM St       (27)

Where stp is the minimum distance between
the piston head and the lower seal when the gear is
fully extended. Rearrange Eq. (27) by isolating N,
and  then  substitute  N  into  Eq.  (26)  to  get  an
explicit form of Fow:

                                (28)

(29)

The total friction in the landing gear, f, in
equations (01c) and (02c) is now assumed to be:

This paper assumes that a proportionate part of
the fuselage (half of the 80% of the total weight
that rests upon the main gear) is treated as a lump
mass centered at  the centerline of  the main upper
cylinder. Also, this model takes into account only
vertical loads on the strut.   The tire is modeled as
a nonlinear spring and damper. This tire model
does not take into account spinning stiffness
(because the test tire does not spin) or spin-up drag.
The fluid is assumed to be incompressible and all
structural  members  are  assumed  to  be  rigid,  with
each having only a vertical degree of freedom.
These assumptions are good only for straight-line
taxiing over runway profiles and landing impact
(spin-up drag on the tire does not significantly
effect the vertical loads on the strut). Any braking
or turning maneuvers are not covered in the
development. The equations developed here are
the basis for a "rollout" simulation.

4. Conclusions

In this, the nonlinear equations of motion were
developed for a general, telescoping main landing
gear.

These equations contain a pneumatic spring
that is determined based on the polytropic gas
compression law, a hydraulic damping that is
proportional to the stroke rate squared,
gravitational forces, lift, inputs from a runway, and
finally friction, which is composed of both a
constant seal friction and a variable bearing
friction. These equations explicitly contain the
empirical parameters of polytropic gas constant,
discharge coefficients for both the main orifice and
the snubber orifices, and the friction levels in the
gear. These parameters are the only variables that
appear in equations (01) and (02) that cannot be
directly measured.

Equations (01) and (02) are highly nonlinear
and are discontinuous due to the differing values
of friction and discharge coefficient as a function
of extension and compression. Future work will
discuss more about the nature of these equations
and present a method of solving these equations
for gear displacements and velocities.

stpXX
FmaN

awg

t

)(
stpXX

FmaF
awg

t
t



TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies

180

References

[1]Greenbank,S.J., Landing Gear-The Aircraft
Requirement, Proceedings of Institute of
Mechanical Engineers, Vol. 205, 1991;

[2]  Norman,  S.  - Aircraft Landing Gear Design:
Principles and Practices, Lockheed
Aeronautical Systems Company AAIA
Education  series;

[3] O'Massey, R. C., Introduction to Landing
Gear Design, ASM Paper No. W70-18.1,
March 1970;

[4]Rashant, K. Simulation of Landing Gear
Dynamics and Brake-Gear Interaction,
Germany, 2008

[5] Sonny,T.,Mason,H., Landing Gear Integration
in Aircraft Conceptual Design,
Multidisciplinary Analysis and Design Center
for Advanced Vehicles, Virginia Polytechnic
Institute and State University Blacksburg,
Virginia,September 1996;


