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Abstract: One of the keys for successful polymer product development is proper material selection. It
is recommended to apply tailor sized polymers in order to realize best product performance with respect
to the requirements. Material simulation is a possibility to predict material data from modified polymers,
e.g. particle filled polymer, for strength calculation purpose, which is eminent part of the product design
process. A method to simulate stress-strain behaviour of polymers containing spherical structures is
shown for TPU material.
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1. General Introduction

A successful polymer product requires a proper
material  selection.  Therefore  it  is  necessary  to
integrate both a material based strength calculation
and structural optimization as the two main
elements of a computer aided product developing
process, Figure 1. Material simulation is a possible
tool to provide material data from any polymer
modification for strength calculation.

Figure 1: Product development process from the idea to
the final production

Material properties of thermoplastic polymers
depend on the one hand on their thermal history,
due to the processing conditions during moulding,

as well as on a possible tailor sizing by adding e.g.
fillers or reinforcement to the polymer matrix.

To study the possible consequences of such
variations for the strength behaviour of the
polymer a material simulation is recommended. It
provides a fast and helpful method for advanced
product development.

2 Investigated Material

Segmented thermoplastic polyurethanes TPU
belong to the class of TPE and they show soft and
rubberlike behaviour at RT. Nevertheless they
perform comparably strong, are oil resistant and
behave superior abrasion resistant, which
recommend them for e.g. sealing applications. But
the properties of TPU are highly influenced by
their morphology developed during the melt
processing and subsequent solidification process.
The stress-strain behaviour of TPU is observed to
be strongly dependent on the present crystalline
domain structure, which shows to be spherical
shaped. Also for semi crystalline polymers the
spherical crystalline fraction determines the end
use properties of the material. Concerning that a
material simulation can provide to better material
understanding basically and can also suggest
optimal morphological structure for the polymeric
material  in  order  to  perform  best  in
application.Thermoplastics can further contain
fillers  such  as  glass  balls  or  minerals  particles  to
enhance the strength and stiffness of the basic
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material. Material simulation gives a possibility to
predict the material behaviour of modified
polymers for strength calculation purpose. It can
provide information for improved material
selection and qualification for a demanded product
under development.

Material simulation requires material
parameters for input in order to model a polymeric
material as a part of product development process.
There are two possibilities to obtain the
parameters. Either a theoretical based material
system can be generated or the material data are
received by analyzing a real polymer sample.

3 Modelling

3.1 GENERATED STRUCTURE
To study theoretically on a possible influence

of spherical inclusions in a polymeric material
matrix a determined distribution of the spheres
with a chosen radius, Figure 2,  is  input  into  the
software, e.g. Digimat® from Xstream-
Engineering, and a representative volume element
(RVE) is generated. The software then provides
the stress-strain curve of modeled material. It is a
way to simulate material behavior depending on its
spherical inclusion fraction and inclusion size and
distribution, where the inclusions may represent
spherulitical crystalline structure in semi
crystalline  polymers  or  any  filler  with  an  aspect
ratio near 1.

Figure 2: Virtual material simulation based on
generated structure

A virtual section view of this RVE can be taken
to visualize and study the morphology and it also
can be compared with a micrograph taken from a
real cross section of a material sample micro
structure, in order to validate how realistic the
modeled morphology is.

3.2 DERIVED STRUCTURE
To approach on the evidence of a certain

morphological structure on the mechanical
behavior of a polymeric material sample it is
helpful to model this real existing material
morphology by means of material simulation in a
reverse procedure.

As a starting point a light microscopy (LM) or
even transmission electron beam microscopy
(TEM) micrograph is observed and the distribution
of the detected spherical inclusions, e.g. spherulits,
is identified, see Figure 3.

Figure 3: Real material modelling based on the derived
structure

Using these information received a RVE is
generate  and  is  basis  for  further  material
simulation procedure, in order to establish the
stress-strain behaviour of the modelled material
structure.

The challenge hereby is on one hand to analyse
properly the inspected morphological structure in
the 2D micrograph and on the other hand to
reconstruct the size and dispersion of the observed
inclusions in the regarded volume.

3.2.1 Image analysis of micrographs
A  computer  assisted  image  analysis  of

morphological micrographs seems problematic
regarding a proper detection and reproducible
results.

As  a  basic  requirement  for  computer  assisted
determining the diameter of a spherical structure
embedded in a grey environment it needs to have a
sufficient contrast between the both structures next
each other. The grey values of each of them must
differ  strongly  in  their  brightness.  Otherwise  an
automatic detection is not possible, whether due to
insufficient contrast of the structure intended to get
measured or due to random variation of the



TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies

39

structure in geometry and deviation from the
predefined geometry.

If an automatic evaluation of the micrograph of
a material morphology is not feasible and the
inspection is done visually then there is no
necessity for any contrast optimization and
correction of inhomogeneous grey values
distribution in the image due to the varying section
thicknesses of the previous inspected microtome
section under transmission light microscope. To
avoid inconsistencies in the measuring results by
visual evaluation of morphologies it is recommend
involving always the same person for inspection
task.

3.2.2 Relation between measured circle radius
and the radius of the sphere

When observing on a cross section of a material
filled with spherical inclusions randomly
dispersed, and even all the inclusions have same
diameter, the circle shaped cross sectional areas of
those inclusions show different diameters.

The mathematical calculation of the diameter
distribution of spherical inclusions in a matrix
material from the estimated radius distribution of
the measured circle shaped areas is mathematically
an ill-defined problem [3], which needs to be
solved. It is quite ambitious and requires expressed
mathematical skills. It is like “tomato salad
problem” and to estimate the diameter of a tomato
by measuring the diameter of its slices. Due to the
difficulties to solve this mentioned problem some
approximation methods have been suggested.
Wicksell [4] was the first who described in 1925 in
a treatise titled “corpuscle problem” the relation
between  a  measured  radius  of  an  arbitrary  section
of a sphere and its real radius. Bach [5] adopted in
1958 the problem and gave refined solution
regarding the size distribution of inspected
spherical sections in translucent slices of finite
thickness.

The approach of Bach [5] uses the second
Volterra integral to describe the relationship
between the size distribution of spherical radius
and circle radius, see equation 1,

R = 2 R R
R R

R R
+ R

(1)

It means:
G R  Sphere radius distribution
g R    Circle radius distribution

F   Cross section area
R    Sphere radius
R     Circle radius

  Sample thickness

The calculation method according to Fullman
[6] is simple compared to the suggested method of
Bach.  Fullman  assumed  that  the  sphere  radius  is
identical to the average radius of Gaussian
distributed circle radii, Figure 4, which are detect.

Figure 4: left: the sphere size distribution (distinct);
right: detected cross section radius distribution

According to that assumption, Fullman
concluded the sphere radius  to be equal
the circle radius .

(2)

Mathematically, the Bach method is relatively
elaborative, but it provides excellent results. The
solution of Fullman, which bases on the simplest
approach to determine the relationship between the
radius  of  a  two  dimensional  circular  section  and
the three dimensional sphere radius, provides at
minor calculation effort also useable results.

3.2.3 Relation between measured cross sectional
area and the volume

To simulate a filled material it is essential to
know on its composition (filler volume fraction) as
well as on the inclusion size and distribution. So
the content volume of filler has to be estimated
from a micrograph of the morphological structure
of a sample, Figure  5.  It  is  necessary  to  estimate
the 3D volume of an inclusion from the diameter
of its two-dimensional (2D) cross sections. Figure
5 depicts the problem.

According to [7] the sum of circular areas
 is equivalent to the total volume of the

spheres . Thus the following equation 3
expressing the relationship between the area
fraction and volume fraction is valid.

Sphere radius  [ m] Circle radius  [ m]
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=
(3)

Figure 5: Left: micrograph of the cross sectional area
of samples with inclusions; right: reconstructed volume
(F1: circular area, V1: sphere volume)

By means of image analysis the cross section of
a material containing spherical inclusions both, the
sphere radius distribution of the inclusions, as well
as the volume fraction of the spheres, can be
estimated.

4. TPU Material Modelling

Material modelling requires first a
mathematical equation which is adapting to the
specific material deformation behaviour and thus
fits to its stress-strain behaviour best. For instance
Mooney-Rivlin equation can be used for modelling
elastomeric materials such as TPU. The
mathematical concept behind this model is a hyper
elastic approach.

In case of segmented thermoplastic
polyurethanes TPU the macromolecular chains
exist from sequentially linked hard and soft
segments. The hard segments can build rigid
domains in the soft segment matrix, depending on
a possible phase separation between both, which is
ruled by the melt processing conditions during
moulding. If the material will be processed at high
melt temperature the hard segments does not
segregate and shape distinct domains, the TPU
therefore  shows  almost  transparent.  In  such  case
there is no expressed crystalline super structure in
the transmission light micrograph visible. The
material is considered to be amorphous in its
morphological structure.

Figure  6 shows a measured stress-strain curve
of an amorphous TPU sample (nominally 94 Shore
A durometer hardness) processed at a melt
temperature  of  250 C  and  its  best  fit  curve
considering Mooney-Rivlin equation. The material
model describes the measured data quite well,
especially at higher strain more than 40%.

Based on the fit curve, considered as the
material model representing the amorphous matrix
material,  it  is  now  possible  to  study  the
consequences of a certain crystalline volume
fraction in the amorphous matrix on the
mechanical properties of the considered TPU by
simulation. The material simulation of partially
crystalline TPU has to approach the stress-strain
behaviour of a RVE containing an amount of hard
and spherical shaped inclusions, which represents
the crystalline structure.

Figure 6: Modelling stress-strain behaviour of
amorphous TPU by Mooney-Rivlin approach (fit curve
calculated with software ABAQUS 6.7)

The further simulation of partially crystalline
material requires the mechanical properties, e.g.
the Young’s modulus of the pure hard segments of
TPU. Unfortunately the mechanical properties of
the pure hard segments or even of the hard
domains cannot be determined easily because it is
almost impossible to approach those separately and
simply. Therefore it needs to find approximate
material data for crystalline structure.

It is well known that a homo-polymeric
polyoxymethylene (POM-H) represents a strongly
crystalline polymer and has crystalline content up
to 90% [8, 9, 10]. Thus in a first order approach
the  TPU  hard  segments  are  considered  to  have  a
similar stiffness than POM-H. The Young´s
modulus is taken to be 3000 MPa for the hard
segments.

4.1. SIMULATION OF CRYSTALLINE
CONTENT

In order to simulate the influence of hard
segment domains in amorphous TPU material
representative volume elements (RVEs) of TPU
were generated containing spherical shaped
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crystalline fraction content. The RVE generation
procedure was as described before and RVE
created using Digimat software. The diameter was
considered 10 m for simulating crystalline
structure when the volume fraction content varies
from 0 to 30 vol%.

Figure 7 shows the influence of growing
content of crystalline structure on the stress-strain
behaviour of TPU, the material becomes
significantly  stiffer  and  its  strength  rises.  It
becomes obvious that the TPU must perform in
service application quite different depending on its
present crystalline domain fraction. The stress-
strain behaviour of this material depends hardly on
the melt processing conditions during
manufacturing process.

Figure 7: Simulated stress-strain curves for TPU with
different vol.% crystalline domain content (d: sphere
diameter of inclusion)

Figure 8: Simulated stress-strain curves for TPU,
amorphous state and with 20 vol.% crystalline domain
content (mono and bi-sized inclusions, d: sphere
diameter of inclusion 1, D: sphere diameter of
inclusion 2)

Assuming the crystalline domain fraction in
total  to  be  20  vol%  and  it  exists  from  2  different
diameter sized inclusions (10 m and 30 m) it is
calculate by simulation, that the bi-modal
crystallinity gains better material strength
behaviour than a mono-modal one, Figure 7

5. Summary

Material simulations allow to model polymeric
material with incorporated inclusions, such as
crystalline domains or fillers, in order to study the
resulting mechanical behaviour. The data received
can be used for within the product development
process and also for material science purposes.

The simulation possibility was approached on
segmented TPU material.
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