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Abstract: A mathematical model of the spatial vibration powertrain bus considering geometric 

nonlinearity of system and gyroscopic system effects has been elaborated. The comparative analysis of 

the vibration characteristics of the power unit in case of installing it on three, four or five bearings in the 

working frequency range of loads due to dynamic unbalance elements of the engine has been elaborated. 
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1.  Introduction 

With the development of a fleet of vehicles, as 

well as wide range of power units that can be 

mounted on cars and buses, much attention is paid 

to the vibration and acoustic comfort of drivers and 

passengers as due to international and national 

standards, and to maintain health, safe 

transportation of goods, reliable operation of all 

machinery and systems of the vehicle. [1–6]. 

Vibration Active power plant, which 

significantly affects the mechanical vibrations of 

the whole system of the vehicle, essentially 

depends on the mode of the engine. Engine, as a 

source of vibration, creates the most adverse 

impact on the city bus, the movement is 

characterized by the fact that the engine is running 

at idle more than 1/3 of the total operating time and 

the fact that the duration of the phases of rapid and 

slow motion is more than half the total time 

operation [3, 5, 6, 7]. 

Vibration power plant due to dynamic 

unbalance motor elements, mainly researched on 

the basis of linear, mostly flat computational 

models [1, 2, 7]. The more accurate - spatial 

models of vibrating processes powertrains have 

been proposed in scientific works [5]. Interference 

of the aggregate oscillations and load carrying 

structure, which is caused by the movement of a 

car or bus on the road with irregularities, is 

analyzed on the basis of simplified chain or flat 

models [1, 2, 7], because the amplitudes of vertical 

oscillation of the body and aggregate are the 

largest in these regimes. The oscillations of the 

elements of the vehicle in the vertical plane and 

dynamic phenomena in transmission are 

considered together in scientific works [1, 2].  

Despite the fact that the theory of spatial 

fluctuations in solids and their systems sufficiently 

processed [8], the question of selecting the number 

of poles of the power unit, their characteristics and 

rational allocation is not fully covered in the 

literature. At the same time, their solution is a 

prerequisite for effective design of vehicles. 

2. Setting of the Problem 

This work concerns the development goal of the 

mathematical model of spatial fluctuations 

powertrain bus considering geometric nonlinearity 

and gyroscopic effects and comparative analysis of 

vibration characteristics of the power unit in case 

of installing it on three, four or five poles in the 

working frequency range of loads caused by 

dynamic Imbalance elements engine (from 12,732 

to 35,014 Hz, corresponding cyclic frequency 

range from 80 to 220 rad/s). 

3. The Mathematical Model of Spatial 

Oscillations of the Power Aggregate 

The power aggregate of the vehicle is 

considered as a rigid body installed on a stationary 

basis at n elastic supports (Fig. 1). To determine 

the position of the power aggregate at an arbitrary 

point in time we use three coordinate systems: a 

fixed system Ox0y0z0, the system always linked to 

power aggregate Сξηζ, the beginning of which is 
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located in the center of gravity of the aggregate, 

and the axis is the principal axis of inertia and the 

system Сxyz, which beginning coincides with the 

center of gravity of the aggregate, and the axis are 

moving parallel with respect to the fixed 

coordinate system.  

We assume that the beginnings of the 

coordinates of all three systems are the same at the 

initial time.  

Spatial oscillations of the power aggregate 

will be regarded as the result of the imposition of 

translational motion of its center of gravity C and 

spherical motion around its center. The position of 

the center of gravity C in a fixed coordinate system 

will be determined by the center coordinates xс, yс, 

zс,  and the position of the aggregate in its spherical 

movement - using Euler angles ψ, θ, φ (fig.1). 

x0
O

y0

z0

C (xс,,yс,zс) x 

y 

z 

ζ 

ξ 

η

 

θ 

ψ

φ

ψ

 

θ 
φ

 

 
Figure 1: The coordinate systems for the study of 

spatial oscillations of the power aggregate 

The equations of translational motion of the 

center of mass of the power aggregate in a fixed 

coordinate system can be written as:  

1

;
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(1) 

where m – the mass of the power aggregate, vсx, vсy, 

vсz – projection of velocity of the center of mass on 

a fixed axis Ox0, Oy0 і Oz0; Fx, Fy, Fz  - the 

projection of the main vector of loads caused by 

dynamic unbalance mechanisms, reduced to the 

center of gravity of the aggregate on the fixed 

axes; Rxi, Ryi, Rzi (i = 1, 2, …, 4) – the projection of 

reactions of elastic supports on a fixed axis; t – 

time.  

For the coordinates of the center of mass of 

aggregate the fair interrelations are 

;c
cx

dx
v

dt
   ;c

cy

dy
v

dt
   .c

cz

dz
v

dt
  (2) 

The equation of spherical motion of the power 

aggregate around the point C a Рівняння 

сферичного руху силового агрегату навколо 

точки С record in the moving coordinate system 

Сξηζ as 
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(3) 

where Jξ, Jη, Jζ – aggregate principal moments of 

inertia relative to axes Сξ, Сη, Сζ; ωξ, ωη, ωζ – 

projection of the angular velocity of the body on 

the axis Сξ, Сη, Сζ; Мξ, Мη, Мζ – points of 

pressures relative connected with the aggregate of 

axes Сξ, Сη, Сζ; Lξi, Lηi, Lζi (i = 1, 2, …, n) – 

reaction times of elastic supports relatively to the 

relevant axes.  

The projections of the vector of angular 

velocity of the body on the invariably connected 

with it axes determine by the formula Euler  

;cossinsin 
  

;sincossin 
  .cos    

(4) 

with the notation  

;


dt

d
  ;



dt

d
  



dt

d
 (5) 

write the relation (4) in matrix form 

,  G  (6) 

where Ωξ і Ωψ – matrix-column 

 col , , ,           

 col , , ;         
(7) 

G – square matrix of coordinate transformation 

.

10cos
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
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

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





G  (8) 

Differentiating (6) with time, using (8) we obtain: 
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H
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dG
H
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   

cos sin sin cos sin 0

cos cos sin sin 0 0 .

sin 0 0

  

 



       
 

      
 

  

 

(10) 

We assume that the load due to dynamic 

unbalance of the motor mechanisms are defined in 

the moving sysyem of coordinates Сξηζ, and 

reaction of supports - in the fixed Ox0y0z0. 

Projections of the main vector of loads on a fixed 

axis is found as 

ñFDF 0 , (11) 

where 

 ;,,col0 zyx FFFF    ,,,col  FFFFc   

elements of the matrix D respectively equal  

11 cos cos sin cos sin ;d         

12 cos sin sin cos cos ;d          

13 sin sin ;d     

21 sin cos cos cos sin ;d         

22 sin sin cos cos cos ;d          

23 cos sin ;d      

31 sin sin ;d    32 sin cos ;d     33 cos .d    

(12) 

Here Fξ, Fη, Fζ – the main vector projection of 

loads on the axis of the system Сξηζ. 

Projections of the main vector of reactions of 

supports on fixed axes found in the form of  

  ,
1

0 



n

i

iiiii VNXCR  (13) 

where R0 – matrix-column of the projections of the 

main vector of reactions,  

;,,col

111

0 












 



n

i

zi

n

i

yi

n

i

xi RRRR   (14) 

Хі і Ξі – matrix-column of the coordinates of 

control points of aggregate  in a fixed invariably 

linked with the body coordinate systems  

 ,,,col iiii zyxX      ;,,col iiii   (15) 

Vi – matrix-column of the projections of velocity 

vectors of control points on the fixed axes  

 ,,,col ziyixii vvvV   (16) 

Ci і Ni – square matrix stiffness and viscous 

friction coefficient of elastic support of the power 

aggregate, 

;


















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xzixyixi

i
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C  .








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
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











zizyizxi

yziyiyxi

xzixyixi

iN  (17) 

The coordinates of the points of securing the 

power aggregate in a moving coordinate system 

Сξηζ are given geometric characteristics of the 

aggregate. In the fixed coordinate system Ox0y0z0 

the coordinates of these points are found in the 

form  

,iñi DXX   (18) 

Moreover, the matrix D is defined by relation 

(12). The velocities of elastic fastening points of 

the power aggregate in a coordinate system Сξηζ 

found in a  

, iciV  (19) 

where Vci – matrix-column of the projection of 

velocities,  

 ;,,col iiici vvvV    

Λі – square matrix, 

.

0

0

0

























³³

³³

³³

i  (20) 

The connection of the projections of velocity 

of fixing points of the body in fixed Ox0y0z0 and 

moving Сξηζ coordinate systems is expressed with 

dependence  

cii DVV  . (21) 

Considering dependences (6), (19), (21) we 

obtain 

 GDV ii . (22) 

Substituting in equation (13) expressions (18) 

and (22), we obtain 

  0 i

1

D-1 D G .
n

i c i i

i

R C X N 



         (23) 
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Considering (11), (23), equations of 

translational motion of the center of mass of the 

power aggregate (1), (2) reduce to the form  

0 0;сdV
m F R

dt
    ,с

c

dX
V

dt
  (24) 

where  

 ;,,col cccc zyxX     .,,col czcycxc vvvV    

The equation of a spherical movement of the 

power aggregate (3) is rewritten using (6) and (9) 

in matrix form  

,
d

J G H K M L
dt




 
        
 

 (25) 

where J – diagonal matrix of the main central 

moments of inertia of the aggregate, 

 diag , , ;J J J J    

К – square matrix 

0 0

0 0 ;

0 0

J J

K J J

J J

 

 

 

 
 

  
 
  

 

Ω – matrix-column, 

  

  

  

sin cos sin cos

cos sin sin cos ;

sin sin cos sin cos sin

   

   

   

       
 
         
 
 
        
 

 

M і L – matrix-columns of the projections of the 

main moments of loads and the main moments of 

the reactions of supports on axes invariably 

associated with the power aggregate,  

 ;,,col  MMMM   .,,col

111
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 


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







n

i

n

i

n

i

LLLL  

Projections of the main moment of loads are 

determined in a coordinate system Сξηζ based on 

the analysis of the work of mechanisms of the 

aggregate. Projections of the main moment of the 

reactions of supports found with (23) in the form  

  
1

1 1 ,
n

i i c i i i

i

L D C X D N D G 



           

(26) 

where Λ – square matrix what is determined by the 

dependence (20), D1=D
-1

, moreover  

111 cos cos sin cos sin ;d         

121 sin cos cos cos sin ;d         

131 sin sin ;d     

211 cos sin sin cos cos ;d          

221 sin sin cos cos cos ;d          

231 sin cos ;d     

311 sin sin ;d     321 cos sin ;d      

331 cos .d    

Thus, taking into account the dependence (5), 

(7), (25), (26), the equation of motion of a 

spherical power aggregate write in the form 

d
J G H K

dt




 
      

 

  1

1

1 ;
n

i i c i i i

i

M D C X D N D G






             

,


dt

d
 

(27) 

moreover, 

 col , , .      

Based on the proposed mathematical model 

the dynamics of the power aggregate YaMZ 238 

with the following suspension options has been 

explored: three-support, four-support, five-support 

are considered in our research. 

It was found that the amplitude of oscillations 

depend strongly on both the crankshaft speed of 

power aggregate and the parameters of its pendant. 

With increasing of cyclic frequency in the range of 

80 rad/s to 220 rad/s the amplitudes are 

monotonically decreasing. The largest were 

vertical displacement amplitudes of the center of 

mass of the aggregate and the smallest were the 

amplitudes of horizontal displacement in the 

direction of the axis Oy. Comparing the maximum 

significance of the amplitudes of translational 

displacements of the center of mass of the power 

aggregate obtained for different types of 

suspension, it can be concluded that the most 

appropriate is three-support suspension of the 

power aggregate. Three-support and five-support 

suspensions are characterized by large amplitudes 

of oscillations of the center of mass of the 

aggregate, which can be explained by the 

narrowing of the resonance between the field of 

oscillations of mechanical system due to increase 

of its rigidity.  
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4  Conclusion  

A mathematical model of the spatial vibration 

powertrain bus enables to conduct a 

comprehensive analysis of the impact of the 

structure and elastic-dissipative characteristics of 

suspension elements on the parameters of vibration 

of the unit. The model provides the necessary 

precision vibration analysis process, since it takes 

into account the geometric nonlinearity of the 

mechanical system and gyroscopic effects that 

inevitably occur during spherical rigid body 

motion. It is shown that reducing the amplitude of 

vibration of powertrains cannot always be achieved 

by increasing the stiffness of the suspension. To 

achieve this goal it is necessary to implement 

operational modes implemented in the frequency 

domain interresonant mechanical system. 

References 

[1] Ломакин В. В. Расчет крутильных 

колебаний в трансмиссии полноприводного 

легкового автомобиля при движении по 

неровным дорогам и оптимизация 

параметров демпфирующей муфты / В. В. 

Ломакин, Нгуен Гуй Чыонг // 

Машиностроение «Известия ВУЗов». – 

2008. – №1. – С. 50–56.  

[2] Ломакин В. В. Расчет колебаний силового 

агрегата автомобиля путем оптимизации 

параметров его опор / В. В. Ломакин, 

Нгуен Гуй Чыонг // Известия МГТУ 

«МАМИ». – 2008. – №1(5). – С. 72–79. 

[3] Горбаха М. М. До питання переобладнання 

вантажних автомобілів в Україні / М. М. 

Горбаха // Системні методи керування, 

технологія та організація виробництва, 

ремонту і експлуатації автомобілів. – 2002. 

– С. 65–68. 

[4] Альдайуб Зияд. К вопросу о поиске 

оптимальных решений для рамы грузового 

автомобиля на базе уточненных конечно-

элементных модедей / Альдайуб Зияд, В. Н. 

Зузов // Известия ВУЗов. Машиностроение. 

– 2005.  – № 12. – С. 46–66. 

[5] Ali El Hafidi. Vibration reduction on city 

buses: Determination of optimal position of 

engine mounts / Ali El Hafidi, Bruno Martin, 

Alexandre Loredo, EricJego // Mechanical 

Systems and Signal Processing. – 2010. – 

№24. – С. 2198–2209. 

[6] Claes Olsson. Active automotive engine 

vibration isolation using feedback control / 

Claes Olsson // Journal of Sound and 

Vibration. – 2006. – №294. – С. 162–176. 

[7]  Тольский В. Е. Колебания силового 

агрегата автомобиля / В. Е. Тольский, Л. 

В. Корчемный, Г. В. Латышев, Л. М. 

Минкин. – М. : Машиностроение, 1976. – 

266 c. 

[8] Ганиев Р.Ф. Колебания твердых тел / Р. Ф. 

Ганиев, В.О. Кононенко. – М. : Гл. ред. 

физ.-мат. литературы. Изд. «Наука», 1976. – 

432 с. 

[9] Смерека І. П. Дослідження геометрії мас 

силового агрегата колісного 

транспортного засобу / І. П. Смерека, В. 

М. Палюх // Проектування виробництво, та 

експлуатація автотранспортних засобів та 

поїздів. – Вип. 8. – 2004. – С. 96–106. 


