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Abstract: The interpolation using power law functions for experimental data obtained from 

an indentation test, performed by a ball pressed on a metallic prismatic part is aimed both 

for loading and unloading curves. To pass up the errors induced by origin displacement, 

from the beginning, it was accepted the error and it will be found, together with all the other 

parameters, applying an optimization criterion. The accuracy of the method is proved by the 

value very close to 1.5 obtained for the exponent, related to the elastic unloading. 
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1. Introduction 

In the first part of the work, a number of 

features concerning theoretical considerations 

upon experimental data interpolation using 

power functions were presented. The main 

observation deduced from the first part of the 

paper is the strong influence that the 

identification of coordinate system’s origin 

where the experimental data are plotted upon 

the parameters of interpolation function. 

Next, several aspects concerning the 

interpolation of data from indentation tests are 

presented.  

 

2. Theoretical consideration 

One of the requirements of a quality 

mechanical design is the knowledge as 

accurate as possible, the physical and 

mechanical characteristics of the used 

materials. Among these properties, the elastic 

characteristics of the materials used in 

mechanical engineering play a major part. A 

first option is studying the technical literature. 

This method presents the advantage of low 

cost and promptness. The drawbacks of the 

method are, first, the fact that the exact 

composition of the material used is not known 

precisely and secondly, the fact that in 

catalogues, the value of mechanical 

characteristics lie in a domain, between 

inferior and superior limit. It is obvious that 

few designers would risk and when 

dimensioning a part, choose from tables, the 

upper admissible stress. Generally, 

dimensioning of parts is made using the lower 

admissible stress, also a safety coefficient and 

the results is supra-dimensioned part. To 

avoid this inconvenient, the domain within 

the aimed mechanical characteristic is 

positioned, should be narrowed. The ideal 

situation is to be able to establish 

experimentally the characteristics for the used 

material.  One of the tests offering numerous 

information concerning mechanical 

characteristics of a material is the hardness 

test. As principle, the test consists in the 

analysis of the behaviour of a material when it 

is pressed using a punch or die. The simplest 

hardness test is the static experiment when the 

load carries out an increasing-decreasing 

cycle at very small velocities, and the 

information obtained are only the shape and 

dimensions of the plastic imprint. More data 

can be acquired when information concerning 

the force and deformation evolutions during 



 

 

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies 

 

79 

the test is accessible. The force-deformation 

curve gives records regarding the two limit 

behaviours, perfectly elastic or perfectly 

plastic. To perform this characterization, 

under the assumption of a power law 

dependency between force and deformation, 

the power exponent is required. For the 

perfectly elastic behaviour, according to the 

Hertzian contact theory, [1], for the contact 

between two spheres, the exponent should be 

3/2.  

2

3

CxF   

 

(1) 

 

In the case that the materials does not present 

perfectly elastic behaviour, the value of the 

exponent decreases up to the value 1 , [2], 

that corresponds to the perfectly plastic 

comportment. Sneddon, [3, gave a reference 

paper where he found the relations between 

force and the deformation of an elastic half-

space, pressed on the boundary surface by a 

rigid axially symmetric punch.  

 
ChF   (2) 

 

where the power exponent takes the value 

1  for a flat face cylindrical punch, 

2/3  for the parabolic punch (limiting 

case for spherical punch) and 2  for a 

conical punch.  

Oliver and Pharr [4], established a 

technique for finding the Young modulus, 

methodology that assumes finding the slope at 

the beginning of unloading phase, supposed 

perfectly elastic, in the case of contact 

between an elastic body and a conical punch. 

The improvement of the method proposed by 

Oliver and Pharr resides in the small loading 

)N10( 3  and deformation )m10( 7  values, 

namely attaining nanoindentation range, and 

practically a non-destructive method.  

Finding the correct exponent for force-

deformation dependency is especially 

important constructing the dynamical models 

that describes the behaviour of systems with 

percussion. Lankarani proposes two models 

for the centric impact of two spheres, 

considering, first, that the entire kinetical 

energy variation is recovered as work of 

internal friction, [5], and secondly, as work of 

plastic deformation. For both models, the 

loading and unloading phases are described 

by power law functions.  

 

3. Proposed method for data attainment 

from an experimental indentation test 

In Fig. 1 is presented the loading-unloading 

curve for a contact between a bearing ball, 

mm19  diameter, and the flat frontal face of a 

mild steel cylinder. As Prchlik emphasizes, 

[6], the most difficult task is to identify the 

point where actually the loading starts, as it 

can be observed from Fig. 2. The equipment 

used for the test, GADALBINI 600 machine 

form Materials Testing Laboratory, allows 

also recording the load and deformation 

variations with time.  

 

 

Figure 1  Three characteristic points chosen from 

loading curve 

 

Figure 2 Detail from a force-deformation curve for 

indentation test 

)y,x(
33 kk  

)y,x(
22 kk  

)y,x(
11 kk  
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The complexity of point and moment of 

test‘s actual commencement is highlighted in 

Fig. 3 and Fig. 4 where there is presented the 

force-time dependency. 

 

 
Figure 3 Loading force versus time 

 

 
Figure 4 Detail of loading force variation with time at 

the initiation of test 
 

One of the main causes influencing the 

difficulty of contact initiation identification is 

the discrepancy between the theoretical 

surfaces assumed smooth and the actual 

surfaces participating at contact. To support 

this affirmation, in Fig. 5 it is presented the 

indentation from an aluminium part after the 

impact with a steel ball. The plot attests that 

in initial phase, the contact between the micro 

roughness from the two surfaces is made 

firmly and after flattening these asperities, the 

certain contact between the two bodies takes 

place.  

To surpass the difficulty concerning the 

contact initiation identification, one considers 

the observation that during the loading zone, 

Fig. 1, there are easily distinguished two 

regions: one, at start, when the force gradient 

is lower and the second, where the curve is 

steeper. 

 

Figure 5 Plastic imprint after an impact test 
 

The complexity consists in 

establishing precisely the point that separates 

the two zones. From the loading region, it is 

separated the zone where it is considered that 

the firm contact is made (blue coloured plot in 

Fig. 1 and Fig. 2). In this zone, is proposed a 

dependency having the form: 

 
)xxCyy 00   (3) 

 

where the constants C , ,   0x  and 0y  have to 

be found from the condition of minimum 

imposed to the function:    

 

 

fin

in

k

k

2
k00k00 ]yy)xx(C[)y,x,,C(F 

 

 

(4) 

The sum is extended for all the points with 

order numbers between an initial value ink  

and fink , final value. Finding the actual values 

of the constants C , 0x  and 0y  assumes 

solving the system with four equations 

obtained by deriving the function from 

equation (4) with respect to each of the four 

parameters. The system obtained is a 

transcendental one and a numerical method is 

required for solving it.  

Regardless of the methodology, the 

numerical procedure initiation supposes 

précising a guess value. A Newton - Raphson 

algorithm was applied for solving the system, 
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[7], but the method was inadequate because 

no mater the initial values considered, at some 

point, the functional determinant from the 

structure of the algorithm becomes zero and 

the procedure finishes.  

Considering the facts presented in the first 

part of the paper, form Fig. 1, the relative 

error for finding the force for which the 

contact is accomplished is much smaller than 

the error for identification of deformation at 

firm contact installing. Specifically: 
 

|xx|

x

|FF|

y

minmax

0

minmax

0





 

 

(5) 

 

One can consider 0y0   and therefore the 

interpolation function becomes: 
 

 )xCy 0  (

6) 

 

The values of the parameters from the 

interpolation function result from the 

minimum condition imposed to the function: 
 

 

fin

in

k

k

2
k0k0 ]y)x(C[),,C(F   

 

(7) 

 

The actual form of the system: 
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being, explicitly: 
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(9) 

Again, a guess value solution is necessary to 

solve the system (9). To find a start solution 

as close as possible to the exact solution, 

three points from the considered zone are 

chosen, )y,x(
11 kk , )y,x(

22 kk , )y,x(
33 kk , two 

positioned in the vicinity of the extremities 

and one, in the centre of the zone, and the 

curve (6) is obliged to pass through the three 

points. Thus, it results the following system:       
 



















'
0kk

'
0kk

'
0kk

)'x('Cy

)'x('Cy

)'x('Cy

22

22

11













 

 

 

(10) 

 

The solution of the above system, )',','C( 0  

will be applied as guess value for solving the 

system (8) by Newton – Raphson algorithm. 

The advantage of employing the system (10) 

consists in the fact that the equations of the 

system can be solved with respect to 'C  and 

' ; finally, a transcendental equation with 

respect to 0'  is obtained:  
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(11) 

 

and solving it presents no difficulty. It was 

observed that the solutions of system (8) are 

strongly dependant on the dimensions and 

position of the restriction from Fig. 1.  

 
Figure 6 The values of objective function for different 

values of initial deformation 
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In Fig. 6 it is presented the variation of the 

function ),,C(F 0  having the parameters 

found by the methodology described above, 

considering that the region of appliance are 

the points starting with qk  and ending to the 

point where the force is maximum, 

corresponding to n .   

For this value, In Fig. 7, are presented the 

experimental data, the interpolation curve and 

the curve (6) traced with the values obtained 

from system (10), specifically, for the guess 

values : 

4
0

8

1054.3

377.1

10815.2'C









  

and the resulting exact solutions: 

4
0

8
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376.1

10744.2C









  

 

 
Figure 7 Experimental data, interpolation curve for 

loading phase  
 

It can be observed that the exact solution is 

very close to the guess value.  

Fig. 8 presents the results of the method 

applied for the unloading phase of the contact.  

For the guess values : 

4
0

8

10513.4'

405.1'

10617.7'C









  

the resulting exact solutions are: 

4
0

9

10486.4

48.1

10423.1C









  

 
Figure 8 Experimental data and interpolation curve 

for unloading phase  
 

The rightness of the method is validated by 

the value of the exponent found for the 

unloading phase, during which the material’s 

behaviour is perfectly elastic, with 5.1 , 

and the value obtained by experimental way 

is 48.1 . An immediate application of the 

method is accurate finding of final plastic 

deformation.  

 

m10998.0

10488.310486.4x

4

44load
0

unload
0rem




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 
 

 

Establishing the depth of the plastic 

imprint resulting after the contact is troubled 

by the pile-up effect that makes difficult the 

identification oz zero line of the profile.  

 

 
Figure 9 Pile-up effect example 
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For example, the radial and tangential 

profiles of an imprint obtained with a rotating 

disk collided by a bearing ball in free fall, are 

presented in Fig. 9, [8]  

 

3. Conclusions 

In the first part of the paper, via an 

example, it was proved the effect of origin 

displacement upon accuracy of finding the 

parameters of interpolation power function. 

The present part of the work, considers the 

experimental data obtained from an 

indentation test, performed by a ball pressed 

on a metallic prismatic part. It is aimed the 

interpolation using power law functions both 

for loading and unloading curves. To avoid 

the errors induced by origin displacement, the 

interpolation functions accepts from the 

beginning that this error exists and it will be 

found, together with all the other parameters, 

applying an optimization criterion. The 

correctness of the methodology is validated 

by the value very close to 1.5 obtained for the 

exponent, value corresponding to an elastic 

unloading, as engineering literature reveals.  
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