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Abstract: An investigation on the forced small three dimensional vibrations of an 

asymmetrical body hanging of three mutually perpendicular coil springs is presented in the 

current paper. The forced vibrations are caused by harmonic changing excitation force. The 

three dimensional behavior of the coil springs are taken into consideration. Dissipation from 

internal friction in all elastic elements is reduced by corresponding coefficients of hydraulic 

friction. All analytical equations in the study are presented in a matrix form. Amplitude 

frequency and phase frequency characteristics for all generalized coordinates are defined. The 

numerical solution is done by a special program in the MatLab environment. The study is 

intended for specialists in the field of vibrations and protection from vibrations. 
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1. Introduction 

Three dimensional vibrations of the rigid 

body, or a system of rigid bodies, connected 

with elastic elements are studied in a large 

number of published scientific papers in world 

literature, for example [Ganiev 1976], 

[Tcherneva 1987], [Buchvarov 1994], and 

others. However, the three dimensional 

behaviour of the elastic element, such as a coil 

spring, a rubber vibration isolator, metal-

rubber elastic element and others, are not 

accounted accurately in these works. For 

example, a real elastic element with three 

coefficients of elasticity is modeled. This is 

inaccurate and incomplete. It is not allowed us 

to study the actual free and forced vibrations, 

particularly from kinematic excitations, which 

are founded in machines, aggregates and 

vehicles. 

The established theory underlied in the 

treatise [Ganiev 1976] is correct if it is  

assumed that all elastic elements are subjected 

into tension and compression. In many 

machines, especially in the spring suspension 

of transport vehicles, such as railways, heavy 

trucks, planes and other, elastic elements are in 

a very complicated stress and deformable 

state. With their considerable sizes such elastic 

elements can not be replaced by three springs, 

which are oriented in three mutually 

perpendicular directions. Their stress and 

deformable state are three dimensional and not 

only a tensile (tension) or a compression 

(pressure). It is not acceptable a real spring 

element, which has an elastic matrix with 

dimensionality 1212 , and which connected 

to the bodies by two large contact areas, with 

three linear imaginary springs to be replaced. 

This is obviously inccоrect. 

Coil spring by Finite Elements Method 

(FEM) in the work [Ivanov, 1996] was 

studied. The full stiffness matrix of this spring 

was obtained and all elastic coefficients, which 

its stress and deformable state are defined. 

An influence of mechanical and 

geometrical parameters on measuring and 

control of cylindrical springs in a specialized 

laboratory of Todor Kableshkov University of 

Transport is studied. This is published in the 

paper [Shtarkalev, 2014]. The researchers in 

this work obtain the stiffness matrix of such 

springs by an experimentally way. 
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Currently, many mechanical systems are 

studied successfully by powerful programs on 

FEM [Ivanov, 2010]. For example, one such 

great program package is Ansys [Ansys, 

2009]. These programs, however, are very 

difficult to learn and they give not to the 

researchers necessary freedom, especially 

when they describe the excitations and 

nonlinearity. 

The author of this paper offers all elastic 

and damping elements, which to a rigid body 

are connected, to be solved by FEM with 

smaller programs like Solid Edge, Solid 

Works, Cosmos, Comsol and other [Solid 

Edge, 2012]. Of course, this approach does not 

exclude the possibility these elastic elements 

to be explored experimentally in specialized 

laboratories. So, accurate information on the 

elastic and damping characteristics of the 

spring elements could be obtained and 

comnfirmed. Moreover, mass and inertia 

properties of the solid body could be defined 

numerically by such of these programs too. 

Further, the study of small three 

dimensional vibrations continues with 

obtaining of the corresponding differential 

equations. These equations are solved 

analytically, if they are linear, or numerically 

by means of specialized mathematical program 

such as MatLab, MathCAD, Mathematika, 

MuCAD and others. 

Figure 1: Dynamical model 

The purpose of this work is the forced small 

three dimensional vibrations of an aggregate 

connected to three elastic elements to be 

studied by the method described above using 

the previously obtained stiffness matrix and 

damping matrix. 

3. Mathematical model 

To illustrate the saying above the following 

numerical example is solved. A dynamical 

model of an aggregate is considered. He's not a 

real machine, but all parameters are selected 

appropriately and they correspond to the actual 

event. 

The aggregate is treated as an non-homo-

genеous assymetrical rigid body with a mass 

][kgm . Its motion is measured to the 

coordinate system zyxO . For convenience, it 

is not placed in the center of gravity of the 

body - Figure 1. The body is connected with 

three equal rubber-metal elastic and damping 

elements which along the corresponding axes 

xO , yO  and zO  are orientated. 

The vector of generalized coordinates that 

are defined the position of the body during its 

small three dimensional vibrations, has the 

form: 
T

zyxzyx q ,  
(1) 

where the functions )(tx , )(ty  and )(tz  

define the linear displacements of the pole O , 

and the functions )(tx , )(ty  and )(tz  

define the body rotation around the 

corresponding axes x , y  and z . 

The mass and inertia properties of the body 

with the following symmetrical matrix is 

determined: 
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It is composed by the following sub-

matrices: 

I. Diagonal mass matrix, 
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II. Reverse symmetrical tensor from the 

first range of the mass static moments, 
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(4) 

III. Symmetrical tensor from the second 

range of the mass and inertia moments, 
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(4) 

Rubber-metal elastic and damping elements 

are connected with rigid body and the 

immovable ground hardly in the area with 

centers, respectively kK  and kN , 

)3,2,1( k . The elastic and damping elements 

as condensation finite elements are modeled. 

We will consider the two points kK  and kN  

joints, which nodal displacements and nodal 

forces are defined on the Figure 2. 

 

Figure 2: Joint displacements and joint forces of the elastic elements 

 

Each of the three elastic elements is defined 

with a symmetrical matrix of elasticity 

 
1212

)(

, 
 k

jik cC , )3,2,1( k . 

The system differential equations 

describing small forced three dimensional 

vibrations of the body, as a result of harmonic 

force effect has the form: 

QqKqBqA  ...   . (5) 

In this system of equations the symmetrical 

stiffness matrix is formed by the formulae: 

 
66,
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..
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T
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k kTCTK  , 
(6) 

where matrices kT  include dates for applied 

points kK  and orientations of the elastic 

elements. 

The general force from the right part of the 

equations (5) is presented by the equal: 

  tpt .sin.ˆ)( HQ  , 
(7) 

 

kN  

k  

kK  

kNu  

)( kN

u  

kNw  )( kN

w  

kNv  

)( kN

v  

kKu  

)( kK

u  

kKw  )( kK

w  

kKv  

)( kK

v  

 

k  

kK  

)( kN

um  

)( kN

wm  

)( kN

vm  

)( kK

um  

)( kK

wm  

)( kK

vm  

)( kN

uf  

)( kN

wf  

)( kN

vf  

)( kK

uf  

)( kK

wf  

)( kK

vf  



 

 

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies 

 

40 

 

where the vector Ĥ  includes the components 

of the main force and the main moment of the 

excitation harmonic force after making a 

reduction to the coordinate pole O , ]/[ sradp  

is the excitation circle frequency of the this 

force, and ][rad  is its initial phase. 

The matrix B  is also symmetrical and it is 

defined dissipation properties of the system. 

With other words, it accounts the inner friction 

in the rubber-metal elastic elements. 

4. Numerically solution 

A numerical solution of the system of 

differential equations (5) with software 

program MatLab is implemented. The 

following parameters are used: 

Mass of the body: kgm 176.205 . 

Coordinates of the mass center: 

624.0Cx ; 502.0Cy ; 

226.0Cz  ][m . 

Mass inertia moments: 289.66xJ ; 

643.91yJ ; 853.32zJ , 194.66yxJ , 

935.28zxJ , 973.23zyJ  ].[ 2mkg  

For numerical solution various stiffness 

matrices and various damping matrices are 

used. 

The base values of non-zero elements of the 

stiffness matrix are: 

03,0302,0201,01 50250 kkk   ]/[ mN ; 

05,0104,02 19500 kk  ; 

04,0306,01 49700 kk  ; 

06,0205,03 59600 kk   ]/.[ radmN ; 

01,0502,04 19500 kk  ; 

03,0401,06 49700 kk  ; 

02,0603,05 59600 kk   ]/[ mN ; 

5750004,04 k ;      7940005,05 k ; 

12060006,06 k ;    04,0505,04 58900 kk  ; 

04,0606,04 23600 kk  ; 

05,0606,05 19600 kk   ]/.[ radmN . 

The base damping matrix is assumed 

proportional to the stiffness matrix according 

to the Voight hypothesis [Seculic, 2011], 

namely: 

KB .  , (8) 

where the constant   is appropriate chosen. 

The vector of amplitude values of the 

excitation force has the following values: 

80ˆ
1 H ; 8034.111ˆ

2 H ; 60ˆ
3 H  ][N ; 

541.33ˆ
4 H ; 818.37ˆ

5 H ; 

657.66ˆ
6 H  ].[ mN . 

Through the composed program in the area 

of MatLab the amplitude characteristics for all 

generalized coordinates of the dynamical 

model are received: 

   HBAKq ˆ....ˆ
12 

 pip  , 

1i  . 

(8) 

Calculations are performed for different 

values of the stiffness matrix and damping 

matrix. The most important relations between 

these matrices are the following: 

K  and KB 05.0 , (Figure 3); 

K  and KB 10.0 , (Figure 4); 

K  and KB 15.0 , (Figure 5); 

K50.1  and KB 10.0 , (Figure 6); 

K50.1  and KB 10.0 , (Figure 7); 

K00.3  and KB 10.0 , (Figure 8). 

Graphs of the calculated amplitude 

characteristics are shown below. 

 

Figure 3:  Ampl.-Ch. for K  and KB 05.0  
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Figure 4:  Ampl.-Ch. for K  and KB 1.0  

 

Figure 5:  Ampl.-Ch. for K  and KB 15.0  

 

Figure 6:  Ampl.-Ch. for K5.1  and KB 1.0  

 

Figure 7:  Ampl.-Ch. for K5.1  and KB 2.0  

 

Figure 8:  Ampl.-Ch. for K3  and KB 1.0  

5. Results and discussions 

Eigen circular frequencies, determined for 

the stiffness matrix K , (Figures 3, 4 and 5) 

are: 7.2 ; 4.5 ; 4.5 ; 6.15 ; 4.45 ; 9.161  

]/[ srad . 

Resonance increases in the amplitudes of all 

coordinates in the zones around eigen circular 

frequencies are noticed. This can be seen 

particularly in Figure 3, a little less in Figure 

4, and at least in Figure 5. All amplitudes 

shown in Figures 3, 4 and 5 start from the 

same initial position. The above three graphics 

refer to the amplitudes on directions x , y  and 

z . The bottom three graphics refer to the 

amplitudes of rotations x , y  and z . 

By consequently increasing the damping, 

namely KB 05.0 , KB 10.0  and 

KB 15.0 , there is a blunting of the 

resonance peaks around eigen frequence 

zones. Using the stiffness matrix K  and 

damping matrix KB 15.0  the most smooth 

amplitude frequency characteristics are 

obtained. 

Eigen circular frequencies, determined for 

the stiffness matrix K50.1 , (Figures 6 and 7) 

are: 3.3 ; 6.6 ; 6.6 ; 2.19 ; 6.55 ; 3.198  

]/[ srad . 

Here some resonance amplitude increases 

for all coordinates by using the damping 

matrix KB 10.0  are noticed. With the 

stronger damping, namely matrix 

KB 20.0 , there is a slight amplitude 

increase only at amplitude of rotation z . 
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This is the bottom curve in Figure 7. For all 

other coordinates a smoothly decrease the 

amplitudes of the whole frequency area is 

noticed. 

Eigen circular frequencies, determined for 

the stiffness matrix K0.3 , (Figure 8) are: 

6.4 ; 3.9 ; 3.9 ; 1.27 ; 6.78 ; 5.280  ]/[ srad . 

Here nature of all curves remains as in 

Figure 7 with one difference that the initial 

amplitudes start twice as low. 

For all the charts is established that 

increasing the stiffness the values of initial 

amplitudes decrease. And increasing the 

damping the resonance peaks are reduced and 

even disappear. 

In depending of the project specification the 

engineer has to select such a ratio between 

stiffness and damping that the amplitudes in 

all generalized coordinates to be less than the 

limit. But at the same time is necessary the 

resonance peaks around all eigen circular 

frequencies to be missing. 

6. Conclusion 

A modern methodology for modeling and 

analysis of the three dimensional vibrations of 

the rigid body, connected with elastic and 

damping elements is presented. 

Geometrical mass and inertia characteristics 

are determined by programs for 3D modeling 

and design. 

The characteristics of the elastic elements 

can be defined by two ways. The first of them 

represents a modeling with programs working 

on the Finite Element Method. A full stiffness 

matrix of the elastic elements is obtained. It 

depends on the type of elements and their 

connections with other bodies. 

The second approach is by experiments. 

The elastic elements, or a small-scaled and 

simplified model of them, are tested in a 

specialized laboratory where all necessary 

parameters, as well as the stiffness matrices, 

are determined and retrieved. 

The characteristics of the damping elements 

are determined in a similar way as the elastic 

ones. If they are separated from the elastic 

elements as independent units, their 

characteristics are given by the manufacturers 

with the whole product. If there are not such 

damping characteristics, from one hand, or if 

they are caused by the inner friction, to the 

other hand, it is better these characteristics in 

the specialized laboratory to be received. 

Based on records of the closed hysteresis 

curves the equivalent viscous resistance can be 

obtained. 

Further the type of excitation is determined 

and the differential equations, describing the 

body motion, are carried out. Finally, a 

solution with specialized mathematical 

program as MatLab, MathCAD, MuCAD and 

so on is done. 
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