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Abstract: The difficulty in solving the viscoelastic contact problem stems from two facts: (1) 

both contact area and pressure distribution are a priori unknown, and (2) the contact 

parameters keep changing with time even when the load is kept constant. These drawbacks are 

overcome in this paper by conducting numerical analysis based on both spatial and temporal 

model discretization. The spatial discretization allows for the iteration of the contact area and 

of its related pressure distribution, whereas the additional temporal discretization provides 

ground for the evaluation of the time-dependent response of the viscoelastic material. The 

contact process is simulated by computing a series of contact states, in which every new state is 

assessed based on information derived in all previous states. The numerical predictions agree 

well with the classic solution of the spherical contact undergoing a step loading. The 

algorithmic computational efficiency is discussed, and a mesh convergence study in the 

temporal dimension is conducted.  
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1. Introduction 

The service life of machine elements made 

by viscoelastic matrix can be extended 

considerably by improving their tribological 

performance. The mathematical modelling of 

viscoelastic behavior in the frame of contact 

mechanics requires simplifying assumptions, 

such as linearity or incompressibility, and 

solutions in the literature are limited to 

particular geometries (sphere, cone) or to 

viscoelastic models with only one relaxation 

time. The numerical analysis can overcome 

this issues, and therefore has become the 

subject of numerous research efforts [1-3]. 

The classic solutions [4-8] in literature of 

the linear viscoelastic contact are based on the 

correspondence principle between the elastic 

and the viscoelastic problems of stress 

analysis. The latter principle allows the direct 

implementation of elastic solutions in the 

viscoelastic problems, provided the boundary 

conditions are properly handled. In the case of 

the contact problem, the changing boundary 

conditions limit the applicability of the 

correspondence principle. Initial contact 

solutions [4-6] for the contact radius obtained 

in this way are subjected to limited 

applicability related to the monotony of the 

contact radius. These limitations were 

gradually released [7-9], but the contact 

problem must remain axisymmetric. The latter 

condition might not be satisfied in case of 

surface contacts undergoing eccentric loading. 

In the numerical algorithm developed 

herein, the technique of deriving the 

viscoelastic solution from its elastic 

counterpart is applied to displacement 

computation instead of the contact radius. The 

contact area and the pressure distribution are 

assessed by means of a contact solver whose 

convergence was previously discussed [10]. 
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The resulting contact model can simulate the 

contact behavior of linear viscoelastic 

materials with arbitrary contact geometry, 

arbitrary loading history, and complex 

rheological behavior.  

2. Discrete contact model 

The contact problem is described in a 

Cartezian coordinate system with the 1x  and 

2x  axes laying in the common plane of 

contact, i.e. the plane that separates best the 

limiting surfaces of the contacting bodies. 

Based on the framework developed in [11], the 

frictionless contact problem can be reduced to 

a model consisting in three type of equations: 

(1) the equation of the surface of deformation 

between the two bodies, (2) the boundary 

conditions, and (3) the static equilibrium. As 

this paper deals with the surface (i.e. 

conforming) contact, the static force 

equilibrium equations are completed with the 

torque equations, meaning the force can be 

applied eccentrically with respect to contact 

normal axis 3x . Without losing generality, the 

eccentricity is allowed along the 1x -axis in the 

current model, leading to a tilting moment 

about the 2x -axis.  

The geometry of the contact problem yields 

the following condition of deformation, 

expressing the clearance between the 

contacting bodies: 

1 2 1 2 3 1 2 3 1

1 2

( , ) ( , ) ( , ) ( ) ( ) ,

( , ) ,

h x x hi x x u x x t t x

x x

    



  (1) 

where h  denotes the gap between the 

deformed bodies, hi  the initial gap (in 

unloaded state), 3u  the composite (i.e., 

relative) displacement along the 3x -axis, 3  

the rigid-body approach,   the tilting angle 

due to the normal force eccentricity, and   the 

considered computational domain, expected to 

include the contact region. 

The boundary conditions and constraints 

are related to the assumptions of (1)  

non-negativity of pressure and (2) 

impenetrability of the bodies in the frame of 

Linear Theory of Elasticity. The first 

assumption leads to neglect of contact 

adhesion, and can be considered very 

conservative in the case of adhesive contacting 

material; however, this assumption is required 

to obtain the pressure distribution by the 

classic minimization process seeking the 

minimum of a quadratic form, as described in 

[10]. It should be noted that this assumption is 

common in the literature of the viscoelastic 

contact. The second assumption involves the 

non-negativity of the clearance between the 

contacting surfaces: 

 1 2 1 2 1 2( , ) 0 , ( , ) 0, ( , ) .p x x h x x x x    (2) 

With the additional constraints that pressure 

is nil outside the contact area, and the 

clearance is nil on the contact area, the 

boundary conditions can be expressed as: 

 1 2 1 2 1 2( , ) ( , ) 0, ( , ) .p x x h x x x x   (3) 

The static equilibrium provides additional 

equations constraining the unknown pressure 

distribution: 

 1 2 1 2( , )W p x x dx dx


  ; (4) 

 1 2 1 1 2( , )We p x x x dx dx


  , (5) 

where W  denotes the normal load, and e  its 

eccentricity (i.e., the distance to the contact 

normal axis). 

The difficulty in solving the contact model 

(1) - (5) stems from the fact that neither the 

contact area, nor the pressure distribution are 

known in advance. An iterative approach is 

therefore needed, involving a trial-and-error 

approach, in which a contact region is 

assumed, and the pressure distribution is then 

computed based on this assumption. If all 

constraints in the contact model are verified by 

the obtained solution, the contact problem 

solution is achieved. This solution is unique 

based on the theorem of uniqueness of solution 
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of the elastostatic problem. Otherwise, the 

contact area is adjusted and a new pressure 

distribution is computed with the new guess. 

This iterative approach requires that the 

response of the contacting material, i.e. the 

displacement induced by the surface tractions, 

is computed for arbitrary contact area and 

pressure distribution. The latter computation 

can only be achieved numerically, and 

therefore a spatial discretization is imposed to 

perform the numerical analysis of the contact 

process.  

A rectangular uniform mesh, having 

1 2N N  grids, is established in the common 

plane of contact, with its sides aligned with the 

axes of the coordinate system. A 

representative point (usually the center) is 

chosen for each elementary cell, and all 

problem parameters are assumed piecewise-

constant, based on the discrete values 

computed in the control points. The notation of 

problem parameters can then make use of the 

discrete indexes of the elementary cells instead 

of the continuous coordinates in the analytical 

model.  

The main advantage is the substitution of 

integration of arbitrary functions over arbitrary 

domains with summation, as discussed in the 

following section. 

3. Viscoelastic displacement computation 

In case of an elastic material of shear 

modulus G  and Poisson’s ratio  , by 

adopting the half-space approximation 

authorizing the use of the Boussinesq solution 

for a point force acting on the half-space 

boundary, the displacement 3

elu  results as: 

3 1 2 1 1 2 2

1 2 1 2

( , ) ( , )

( , ) ,

elu x x B x x x x

p x x dx dx

 

 

    

   

   (6) 

where 2 2

1 2 1 2( , ) (1 ) (2 )B x x G x x     is the 

displacement induced at a point of coordinates 

1 2( , )x x  by a unity normal concentrated force 

acting in origin.  

Based on the spatial discretization 

discussed in the previous section, the 

numerical counterpart of Eq. (6) results as: 

1 2

3

1 1

1 2

( , ) ( , ) ( , ),  

1 , 1 ,

N N
el

el

k

u i j K i k j p k

i N j N

 

  

   


 (7) 

where elK  is the elastic influence coefficient, 

i.e. the integral of 1 2( , )B x x  over the 

elementery cell of side lengths 1  and 2  

along directions of 1x  and 2x , respectively: 

 
 

2 2 1 1

2 2 1 1

( ) 2 ( ) 2

1 1 2 2 1 2

( ) 2 ( ) 2

( , )

( ) , ( )

el

x x k

x x k

K i k j

B x i x x j x dx dx

 

 

  

     
 

  (8) 

The influence coefficient ( , )elK i k j   

expresses the normal displacement induced in 

the cell ( , )i j  by a uniform pressure of 

magnitude 1 21 ( )  Pa acting in the cell ( , )k . 

The viscoelastic response in the frame of 

linear viscoelasticity can be described with the 

aid of two interchangeable functions, namely 

the creep compliance function ( )t , 

expressing the strain response to a unit step 

change in stress, and/or the relaxation modulus 

( )t , expressing the stress response to a unit 

step change in strain. By applying 

superposition in the Boltzmann hereditary 

integral 
0

()

t

dt , the viscoelastic response, 

strain or stress, to any sequence of stress or 

strain, respectively, can be obtained. 

Based on the correspondence principle 

between the elastic and the viscoelastic 

solution of a problem of stress analysis, Lee 

and Radok [4] obtained the contact radius in 

the viscoelastic spherical contact problem by 

applying the hereditary integral to the Hertz 

solution, in which the elastic contact 

compliance 1 (2 )G  was replaced by the 

viscoelastic creep compliance. The same 

technique can be applied to Eq. (6), leading to 
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the viscoelastic displacement induced by a 

history of pressure 1 2( , , )p x x t    in a window of 

observation [0, ]t , under the assumption that 

prior to time 0t   the body was undisturbed: 

3 1 2 3 1 2

0

( , , ) 2 ( ) ( , )

t

vs elu x x t G t t u x x dt
t


   

 .  (9) 

Interchanging differentiation and 

integration in Eq. (9) yields: 

3 1 2

0

1 2
1 1 2 2 1 2

( , , ) 2 ( )

( , , )
( , ) .

t

vsu x x t G t t

p x x t
B x x x x dx dx dt

t

 

 

   

  
     



  
 (10) 

Whereas Eq. (6) requires a spatial 

discretization only to achieve the computation 

of displacement induced by an arbitrary 

pressure distribution, Eq. (10) implies 

integration over the loading history, which can 

be achieved by imposing an additional 

temporal discretization. To this end, the 

loading window [0, ]t  is divided into small 

time steps, and the problem parameters are 

assumed piecewise-constant in the time 

dimension as well. The derivative of pressure 

is further on approximated by the finite 

difference ( , , ) ( , , 1)p i j k p i j k  , and the 

Boltzmann hereditary integral  is substituted 

by the summation operator, leading to the 

following numerical counterpart of the 

continuous equation (10): 

 

1 2

3

1 1 1

1 2

( , , ) ( , , )  

( , , ) ( , , 1) ,

1 , 1 , 1 ,

tN N N
vs

vs

n m

t

u i j k K i j m k n

p m n p m n

i N j N k N

  

    

 

  



 

  (11) 

where ( , , )vsK i j m k n    is the viscoelastic 

influence coefficient, expressing the 

displacement induced after k  time steps in the 

spatial cell ( , )i j , by a uniform pressure of 

magnitude 1 21 ( )  Pa, that acted in the cell 

( , )m  in the n th time step of the observation 

window, with n k .  

The relation between the elastic and the 

viscoelastic influence coefficient was derived 

in [12]: 

 ( , , ) 2 ( ) ( , )vs elK i j k G k K i j  . (12) 

The integration of the viscoelastic 

displacement equation (11) in the contact 

model (1) - (5) is discussed in the following 

section. 

4. Algorithm overview 

Equation (11) clearly shows that, in order to 

compute the displacement at a time t  in the 

observation window, the entire history of 

pressure distribution in the viscoelastic contact 

is needed. Therefore, the contact model (1) - 

(5) needs to be solved successively at every 

time step, thus assuring the simulation of the 

loading history.  

The flow chart of the proposed algorithm is 

presented in Fig. 1, in which an upper index 

was used to denote the temporal step. In the 

beginning of the observation window, as there 

is no loading history, the contact problem is 

solved as a purely elastic process, i.e. the 

displacement is generated by the current 

pressure only. In the subsequent time 

increments, the computed pressure history is 

superimposed in the displacement equation, as 

if the contact has a modified initial contact 

geometry hi . With this approach, the type of 

algorithm employed [13] to solve the 

frictionless elastic contact problem can be used 

for the viscoelastic contact simulation.  

The algorithmic computational complexity 

is dictated by the number of cells in the spatial 

mesh, i.e. 1 2N N , as well as by the number of 

temporal steps tN .  

The most computationally intensive 

operations are the convolution products related 

to the superposition of pressure effects in the 

two spatial dimensions. The computational 

impact is dramatic because these convolutions 

must be computed [13] two times per iteration. 
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Get pressure history:
p(0), , p(k)

Impose a new 
time increment:

k   k + 1 

Compute contribution of pressure 
history to displacement:

u3 hist = u3 hist ( p
(0), , p(k-1) )

End of simulation
 time interval?

Solve the current contact 
state.  Obtain the current 

pressure p(k)

START

STOP
No

Yes

Superimpose the displacement to 
initial contact geometry:

hi(k)   hi(k) + u3 hist 

 
 

Figure 1: Algorithm flowchart 

 

The calculation can be accelerated by 

employing the FFT assisted convolution 

computation [14], so that the order of 

operations is decreased from 2 2

1 2( )O N N  to 

1 2 1 2( log( ))O N N N N  per time step.  

The overall order of computations is 
2

1 2 1 2( log( ))tO N N N N N , suggesting that a fine 

temporal discretization might increase 

considerably the computational requirements. 

In our contact simulations, convergence was 

reached even with a relatively small number of 

time increments, as shown in the following 

section. 

5. Program validation 

The computer program was first 

benchmarked against purely elastic analytical 

solutions for the surface circular contact under 

eccentric loading. When the normal load is 

applied eccentrically, the contact problem is 

no longer axisymmetric, and the number of 

closed-form solution in the literature is limited 

to a few. The validation of the contact solver 

was achieved against the solution advanced by 

Lur’e [15], as shown in Fig. 2, under the 

assumption that the force eccentricity e , 

defined as ratio to the indenter radius R , is 

small enough so that the contact does not open 

(i.e. the contact area remains circular). The 

latter assumption, valid for minute tilting 

angles, is released with the current numerical 

formulation, which can predict contact 

opening without additional difficulty, as 

shown in Fig. 3. It should also be noted that 

the analytical pressure distribution in Fig. 2 

tends to infinity at the indenter edge, as a 

result of the ordinate discontinuity. This 

theoretical behavior can only partially be 

reproduced by the numerical approach, as the 

latter employs averaging of pressure on the 

cells of the computational domain. 

 
Figure 2: Comparison of pressure distributions in 

the plane 
2 0x  , various eccentricities 
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Figure 3: Prediction of contact opening due to 

eccentric loading 
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A second contact scenario involves the 

concentrated axisymmetric contact of 

viscoelastic materials whose constitutive law 

is described by basic rheological models. The 

implicit solutions derived in the classical 

literature [7,8] of the viscoelastic contact for 

the Maxwell and Zener units, brought to a 

more computationally friendly form for the 

step loading 
0

( ) ( )W t W H t  by Ciornei [16], 

were taken as reference for the numerical 

predictions of the newly developed computer 

program. The Hertz contact parameters 

(contact radius 
H

a , central pressure 
H

p ), were 

used as normalizers in Figs. 4 and 5, depicting 

the pressure distributions achieved at various 

time moments from the loading history. The 

relevant formulas [16] used in the generation 

of the reference data are given in Table 1. In 

both cases, the contact radius can be expressed 

as: 3
0

( ) 3 ( ) 8a t RW t  .  

The numerical simulation was conducted by 

imposing a 256 256  spatial mesh and 100 

temporal steps, resulting in the pressure 

distributions depicted using continuous lines in 

Figs. 4 and 5. The data computed numerically 

according to Table 1 is also displayed as 

reference, using dashed lines. 

 

 
Rheological model Creep compliance Radial pressure distribution 

Maxwell 

 

 
 

1
( ) 1

2

t
t

G 

 
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 
,

G   
   

1 1
2 2 2 22 2

0

8 1
( , ) ( ) exp Re ( )

t
G t t

p t r a t r a t r dt
R  

    
            

  

Zener 

 

 

1 1 1 e
( )

2

t

K

t
G G


 

 
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 
 
 

,

K K
G   

   
1 1

2 2 2 22 2

0

8 1 2( )
( , ) ( ) exp Re ( )

t
G t t

p t r a t r a t r dt
R  

    
            



 

 

Table 1: The solution for the viscoelastic spherical contact for basic rheological models 
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Figure 4: Pressure history, Maxwell model 
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Figure 5: Pressure history, Zener model 
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In an additional simulation, a temporal 

mesh convergence study is performed, 

consisting in a gradual refining of the mesh in 

the temporal dimension. The pressure 

distributions predicted for the same time 

moment, obtained with the same spatial 

discretization but with various number of 

temporal steps, are compared in Fig. 6. The 

numerical simulations suggest that mesh 

convergence can be achieved with a relatively 

small number of time steps, and consequently 

the contact process can be simulated with 

reduced computational resources for a long 

observation window. 
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Figure 6: Mesh convergence, Maxwell model, 

2t   

6. Conclusions 

An algorithm for the simulation of the 

conforming contact of viscoelastic materials is 

advanced in this paper, by joining a versatile 

solver for the frictionless normal contact with 

a numerical technique to achieve the linear 

viscoelastic displacement of the surface 

subjected to a known but arbitrary distribution 

of pressure. The latter method is based on the 

elastic-viscoelastic correspondence principle, 

sanctioning the use of solutions of elastic 

problems of stress analysis to derive the 

viscoelastic solutions of the associated 

viscoelastic problems. 

The contact solver requires spatial 

discretization to assess the pressure 

distribution and the contact area in an iterative 

manner, provided the response of the 

contacting material is known. The computation 

of viscoelastic displacement necessitates an 

additional temporal discretization, and the 

current displacement is computed based on the 

entire history of the contact loading. 

Consequently, the viscoelastic contact process 

simulation is achieved by computing a series 

of subsequent contact states, in which the 

current state is based on information from all 

previous states. 

The employed contact solver is well 

adapted to conforming contact scenarios, in 

which the normal force may be applied 

eccentrically, resulting in the tilting of the 

common plane of contact. Compared to 

existing analytical results, the algorithm can 

predict large tilting angles leading to contact 

opening. 

Program validation is achieved by 

comparison with existing results for the Hertz 

spherical contact of viscoelastic materials 

modeled by basic rheological models of linear 

viscoelasticity.  

The strong points of the newly advanced 

computer program consist in: (1) the ability to 

incorporate complex models of viscoelasticity 

(including the ones in discrete form as 

resulting from experimental measurements) 

involving more than one relaxation time, (2) 

the capability of the contact solver to treat 

arbitrary (not only axisymmetric) contact 

geometry, and (3) the capacity to simulate 

arbitrary loading histories. 
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