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Abstract: The paper presents a method and device intended to determine the rolling friction 

torque in a thrust ball bearing. The methodology is based on the fact that, in the case of a thrust 

ball bearing the cage maintains the balls axially equidistant and thus, the rolling components of 
the friction moment from the cage-ball contact points generate a vector system equivalent to 

zero. Based on kinematical aspects it is shown that both spinning and rolling components of the 

friction torque are simultaneously present in a running thrust ball bearing.  
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1. Introduction 

Two solid bodies can interact either directly 

(by direct contact) or indirectly (through 

fields). Concerning mechanical engineering 

applications, the first type is the more 

widespread although lately applications from 

the second category are more and more 

common (magnetic bearings, electrical shafts 

etc.).  

Regarding the direct contact, there are two 

distinct cases: the boundary surfaces of the 

two bodies are identical and when a body is 

fixed and the other one is mobile, the motion 

will be identical the one of the mobile body 

obtained when the roles are switched. This 

contact type corresponds to lower pairs where 

the contact between bodies is made on large 

regions between surfaces of the same type.  

The classic cases to be mentioned are: the 

spherical pair, Fig. 1, the planar pair, Fig. 2 

and the cylindrical pair, Fig. 3, with particular 

cases: prismatic pair and revolute pair. When 

the contact is made between surfaces in a 

manner that the motion of a body, when the 

other is kept immobile, differs from the motion 

of the other body when the parts reverse, the 

pair is named higher pair or irreversible, as 

presented in Fig. 4.  

The frictionless contact between a plane 

and a cylinder is considered to exemplify the 

above. 

 
Figure 1. Spherical pair 

 
Figure 2. Planar pair 

 
Figure 3. Cylindrical pair 
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The motion can be studied in any plane 

normal to the generatrix of the contact, as in 

Fig. 4. The nearest frontal plane is chosen as 

the study plane. In this plane, a circle and a 

straight line are contacting in point C . If the 

straight line is fixed, the C  point attached to 

the mobile circle describes a cycloidal arc. 

When the circle is maintained immobile, the 

C  point attached to the straight line, describes 

involute arcs [1].     

 

 
 

 
Figure 4  Irreversibility of cylinder-plane contact 

 

From the examples above, it can be 

concluded that for the higher pair the relative 

motion between the two contacting elements is 

more complex than for the lower pair case. 

The most encompassing situation refers to the 

case of point contact between the two bodies.  

 

2. The torsor of friction in a concentrated 

contact  

The point contact between two bodies, 

denoted C  is considered. The normal n  and 

the tangent plane t  are well defined in this 

point.  The relative motion between the two 

bodies is characterized by the sliding velocity 

v  from the tangent plane and the angular 

relative velocity  . The component parallel to 

the normal s   is the angular spinning 

velocity: 

 

  T
s nn  (1) 

and the component from the tangent plane is 

the angular rolling velocity, expressed by the 

relation: 

 

 )( T
3r nnI   (2) 

 

where 3I  is the unit matrix of third order. To 

each of the three components of the relative 

motion defined above, a force or a torque will 

oppose. Therefore, to the sliding velocity, the 

friction force T  parallel and of opposite sense 

to the velocity v  will resist, to the spinning 

angular velocity s  the spinning friction 

torque sM  parallel to the normal n  will 

oppose, while to the rolling angular velocity 

r  a rolling friction moment from the tangent 

plane will resist. On the normal direction, the 

interaction between the two bodies is 

described by the normal reaction N .  

 

 
Figure 5. The relative motions and the torsor of 

friction in a point contact 
 

Regarding the values of the components of 

the torsor of friction: for the friction force in 

the case when between the points 1C  and 2C  

which superpose in contact there is no relative 

motion, explicitly: 

 

0vv 
21CC  (3) 

 

It is said that pure rolling takes place 

between the two bodies. In this case, the 

magnitude of the friction force is 

undetermined and represents one of the 

unknowns of the problem. When the relation 

(3) is not satisfied, sliding motion occurs 

between the points 1C  and 2C  and the value 
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of the friction force T  is expressed as function 

of the magnitude of the normal reaction 

according to Amontons-Coulomb law: 

 

NT   (4) 

 

where   is the dynamic coefficient of sliding 

friction. To be remarked that fro the rolling 

friction case the following inequality: 

 

NT   (5) 

 

must be permanently verified.   

Concerning the magnitudes of the two 

friction moments, both the spinning and the 

rolling friction torques are expressed as 

depending on the magnitude of the normal 

force: 

 

)(MM ss N  (6) 

and 

)N(MM rr   (7) 

 

In technical literature one can found 

expressions for the dependencies (6) and (7). 

The simplest forms [2] accept a linear 

dependency between the magnitudes of the 

friction torques and the magnitude of the 

normal force, specifically 

 

NsM ss   (8) 

and 

 

NsM rr   (9) 

 

where ss  and rs  are coefficients with 

dimension of length and are named coefficient 

of spinning friction and coefficient of rolling 

friction, respectively.  

Using the theory of elasticity one can 

conclude that the dependencies (6) and (7) are 

power law functions.  

 

3. Kinematics of relative motion for the 

thrust ball bearing  

The axial section of a thrust ball bearing is 

presented in Fig. 6. The relative motion of the 

ring is a relative rotation about its axis 

performed with the angular velocity .  In 

order to study the kinematics of the relative 

motion of the ball bearing the next artifice is 

made: the relative motion of any of the two 

rings is considered as the resultant of two 

relative motions with respect to the plane of 

symmetry of the bearing normal to the axis of 

rotation. With respect to this plane each of the 

two rings performs a rotation motion of 

angular velocity 2/  and 2/  

respectively. Additionally, the motion of the 

ball can be regarded as a rotation about a fixed 

axis contained in an horizontal plane. Thus, all 

the elements of the bearing execute rotation 

motion about fixed axes.  
 

 

 

 
 

 
Figure 6 Axial section through a thrust ball bearing 

 

In Fig. 7 is represented an axial section 

through the thrust ball bearing evidencing the 

angular velocities together to a side view 

required for highlighting the motion of the 

contact points between the ball and the race. 

The rings were denoted with 1 and 2  and the 

ball with 0 . The fact that the ball has fixed 

rotation axis explains that the points 1C  and 

2C  have the same velocity. 

  

2/  

2/  
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Figure 7. Distribution of velocities in a thrust ball 

bearing 

 

The intersection point between the axis of 

rotation of the ball and the axis of rotation of 

the rings is immobile. In the case when pure 

rolling exists between the balls and races it 

results that the straight lines passing through 

the points A  and the contact point, 1C  and 2C  

respectively, define the instantaneous axes of 

relative motion between the balls and the 

races. The relative velocities 10  and 20  are 

parallel to the lines 10  and 20 , as it can also 

be noticed from the polygon of angular 

velocities.  

For the thrust ball bearing case, the normal 

in the contact point will always be parallel to 

the axis of the bearing. The relative angular 

velocity ball-race presents components both 

along the normal and in the tangent plane and 

this fact conducts to the conclusion that always 

in a thrust bearing there will be 

simultaneously present both rolling friction 

torque and spinning friction torque.  

From experimental point of view, this 

situation is complex when the estimation of 

the spinning friction moment is aimed. The 

quickest method consists in considering 

separately a single ball and a bearing ring and 

determining the spinning friction [3], [4].  

The shortcoming of the method resides in 

the fact that the ball-race spinning motion 

must be obtained using a kinematical chain 

where the frictions have to be insignificant 

compared to the ones from the considered 

contact.  

In [5], [6] it is proved on experimental 

approach that when a lubricant is present in a 

ball-spherical cavity contact, the ball passes 

from a spatial motion regime to a regime of 

rotation motion about a fixed axis. The attempt 

to apply the same technique for the case of dry 

contact showed that the ball always maintains 

the spatial motion regime, fact theoretically 

demonstrated.  

There is a complete different situation in 

the case of ball-toroidal groove contact. In 

these circumstances, a body obtained from a 

ball with attached fly-wheel, first has a spatial 

motion followed next by a rotation motion 

around a fixed vertical axis.  

Based on this remark, the second part of the 

paper presents a proposed method for 

determining the moment of rolling friction in a 

thrust bearing, starting from the statement that, 

when the balls are placed angular equidistantly 

on the race, the rolling friction moments have 

the resultant torque equal to zero.  

 

4. Conclusions 

In the first part of the paper, the categories 

of contacts that can be met in technical 

applications are revealed.  

For the concentrated contacts, there are next 

identified the possible relative motions with 

respect to an intrinsic coordinate system - 

defined by the common normal and the 

tangent plane in the contact point, and 

afterwards the components of the torsor of 

friction are found.  

For the kinematical study, an artifice was 

applied to allow for transforming the ball-

bearing into a system of bodies with immobile 

axes of rotation.  

The kinematical analysis conducts to the 

conclusion that in a thrust ball bearing there 

always will be present in the ball-race contact 

points, moth spinning friction moment and 

rolling friction moment. This fact conducts to 

difficulties when the experimental finding of 

the friction moments in a thrust ball-bearing is 

intended. 
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